-regularity of the Bergman projection on quotient domains

نویسندگان

چکیده

We obtain sharp ranges of $L^p$-boundedness for domains in a wide class Reinhardt representable as sub-level sets monomials, by expressing them quotients simpler domains. prove general transformation law relating on domain and its quotient finite group. The range $p$ which the Bergman projection is $L^p$-bounded our found to shrink complexity increases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of the Bergman Projection on Forms and Plurisubharmonicity Conditions

A function f ∈ C(Ω) is holomorphic on Ω, if it satisfies the CauchyRiemann equations: ∂̄f = ∑n k=1 ∂f ∂z̄k dz̄k = 0 in Ω. Denote the set of holomorphic functions on Ω by H(Ω). The Bergman projection, B0, is the orthogonal projection of square-integrable functions onto H(Ω)∩L2(Ω). Since the Cauchy-Riemann operator, ∂̄ above, extends naturally to act on higher order forms, we can as well define Bergm...

متن کامل

Irregularity of the Bergman Projection on Worm Domains in C

We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.

متن کامل

Analytic Functionals and the Bergman Projection on Circular Domains

A property of the Bergman projection associated to a bounded circular domain containing the origin in C^ is proved: Functions which extend to be holomorphic in large neighborhoods of the origin are characterized as Bergman projections of smooth functions with small support near the origin. For certain circular domains D, it is also shown that functions which extend holomorphically to a neighbor...

متن کامل

The Bergman Kernel and Projection on Non-smooth Worm Domains

We study the Bergman kernel and projection on the worm domains Dβ = { ζ ∈ C : Re ( ζ1e −i log |ζ2| 2) > 0, ∣∣ log |ζ2| ∣∣ < β − π 2 } and D β = { z ∈ C : ∣Im z1 − log |z2| ∣∣ < π 2 , | log |z2| | < β − π 2 } for β > π. These two domains are biholomorphically equivalent via the mapping D β ∋ (z1, z2) 7→ (e z1 , z2) ∋ Dβ . We calculate the kernels explicitly, up to an error term that can be contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Mathematics

سال: 2021

ISSN: ['1496-4279', '0008-414X']

DOI: https://doi.org/10.4153/s0008414x21000079